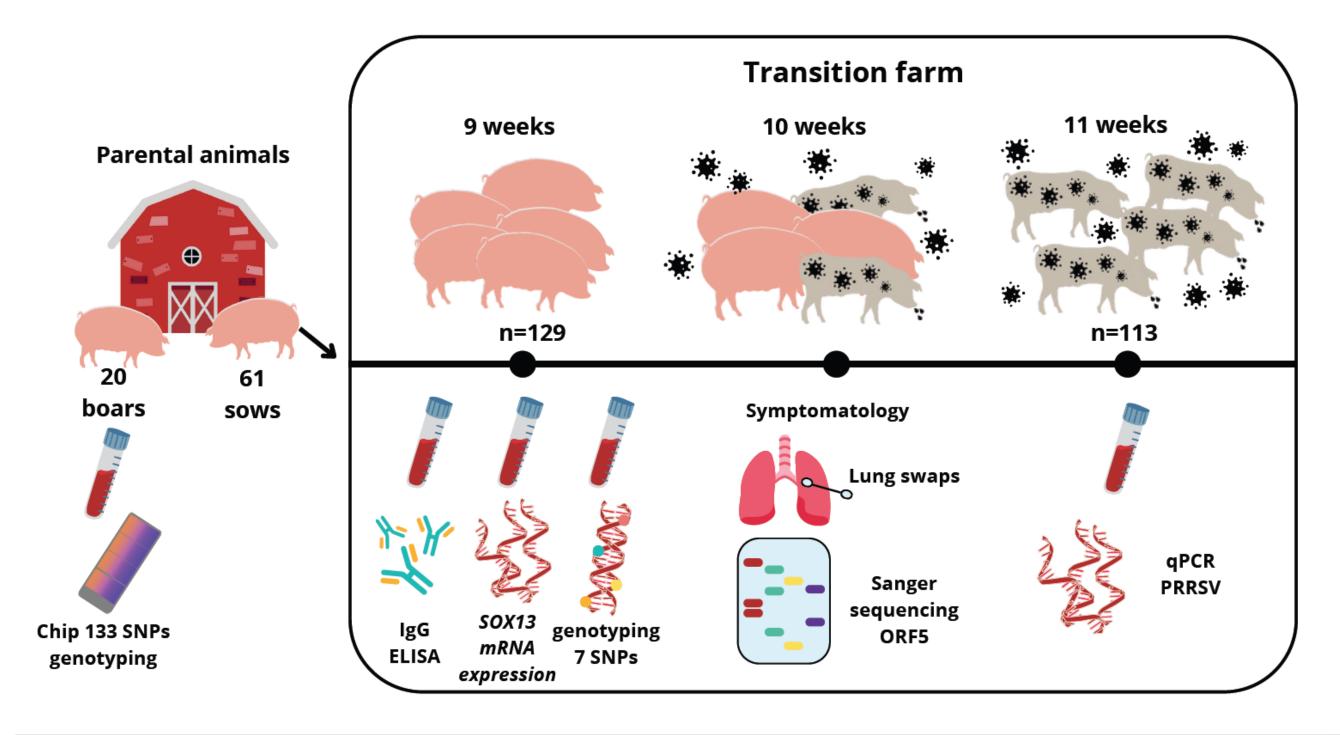


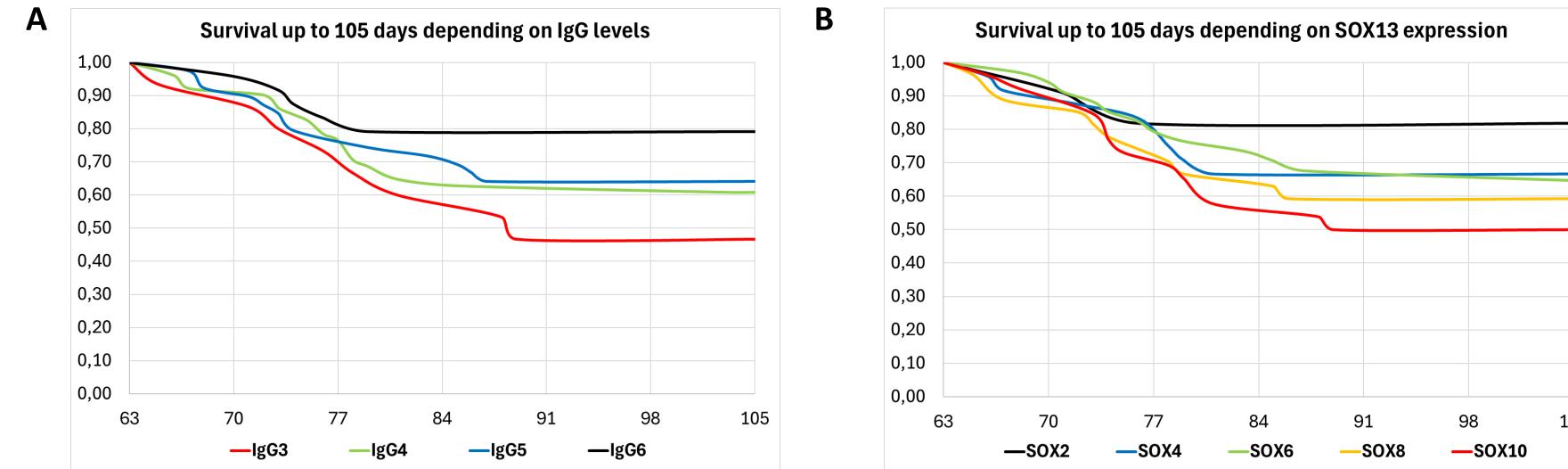
Deciphering genetic factors of survival during PRRSV outbreaks

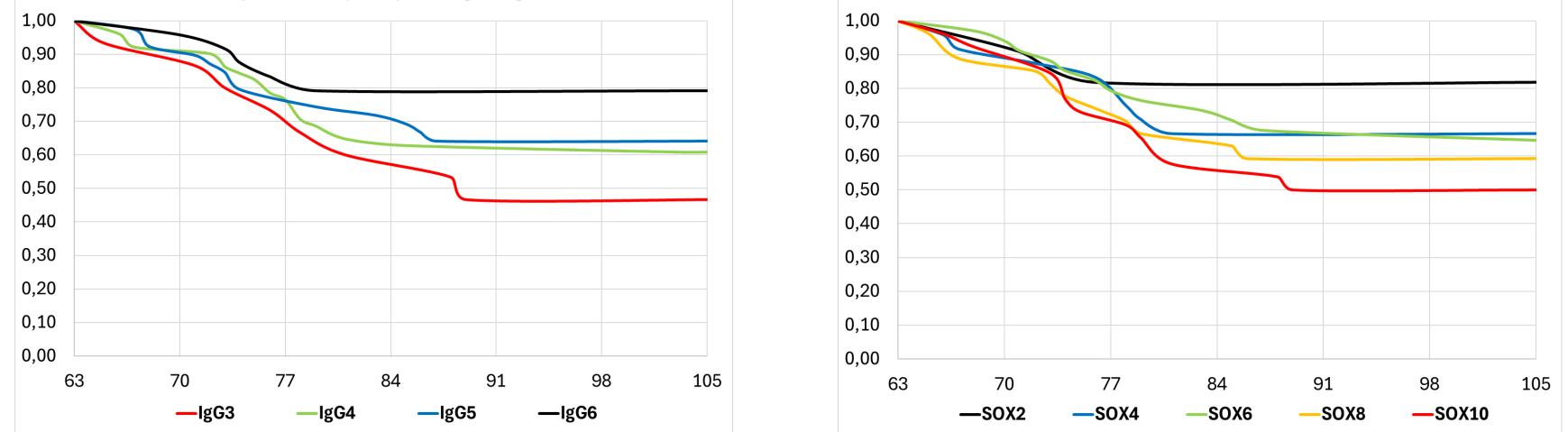

<u>M. Ballester¹, T. Jové-Juncà¹, C. Hernández-Banqué¹, O. González-Rodríguez¹, L. Ganges², S. Gol³, M. Díaz³,</u> R.N. Pena⁴, R. Quintanilla¹, J. Tarrés¹

¹Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain. ²Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain. ³Department of Research and Development, Selección Batallé S.A., Riudarenes, Spain. ⁴University of Lleida, Lleida, Spain

INTRODUCTION

- Infectious diseases are a major threat to the sustainability and profitability of livestock production, global food security and public health.
- Breeding animals to produce more robust and disease-resistant pig populations becomes a complementary strategy to the more conventional methods of biosecurity and vaccination.
- In this study we explored the ability of a panel of genetic markers and immunity parameters to predict the survival


MATERIAL & METHODS


- Blood samples were collected from boars and healthy piglets ($60\pm 2d$) for phenotypic and genotypic analyses.
- Ten-week-old female Duroc pigs were naturally infected with the highly pathogenic PRRSV-1 Rosalia strain.
- Blood samples were collected from eleven-week-old pigs for viral RNA quantification by qPCR.
- The risk of dying was analyzed with survival analysis using a semiparametric proportional hazard model including pen, a polygenic effect and the different markers as explanatory variables.

 $h(t_{ij}) = h_0(t_{ij})exp(pen_j + u_i + s_{ik} a_k)$

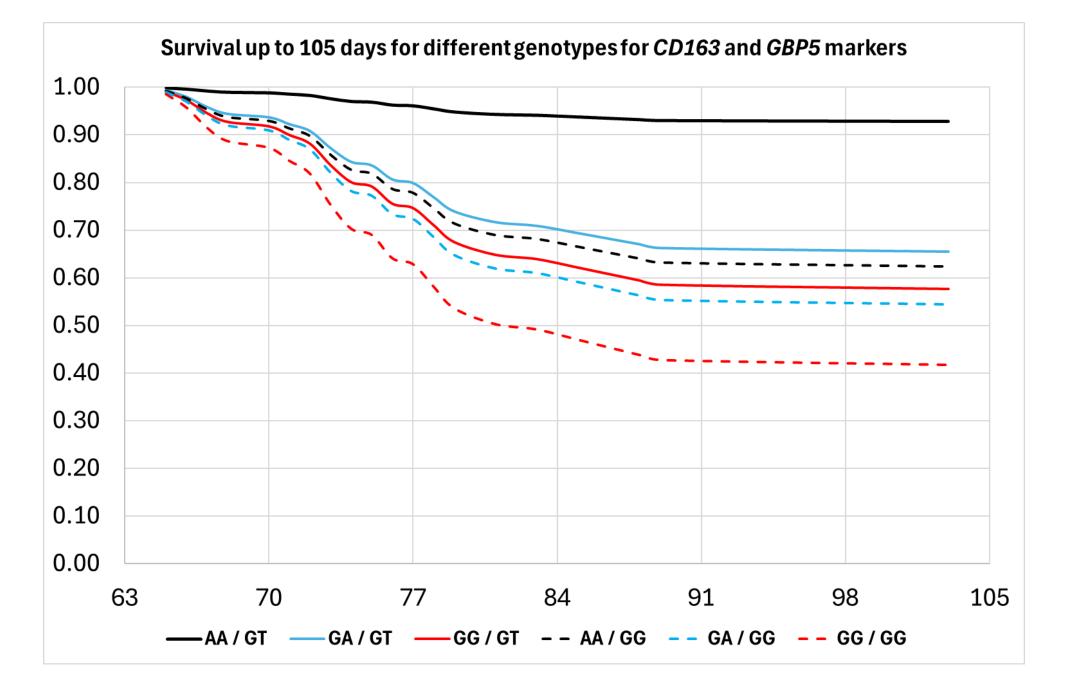

RESULTS

Figure 1. Kaplan-Meier survival functions stratified by immunity parameters. (A) IgG levels were categorized as: IgG3=IgG<3.0, IgG4=3.0<IgG<4.5, IgG5=4.5<IgG<6.0, IgG6=IgG>6.0. (B) SOX13 mRNA expression levels were categorized as: SOX2=SOX13< 3.0, SOX4=3.0<SOX13<5.0, SOX6=5.0<SOX13<7.0, *SOX8=7.0<SOX13<9.0, SOX10=SOX13>9.0.*

Figure 2. Survival rate of pigs depending on the interaction between CD163 (rs1107556229) and *GBP5 (rs340943904) genotypes.*

Table 1. Description of genetic markers related to immunity traits associated with PRRS survival of daughters up to 105 days.

	Allele (F	requency)	Survival up to 105 days for each genotype				
SNP	Resistant	Susceptible	LRT ¹	Resistant	Heterozygous	Susceptible	Trait
rs319560097	T (0.40)	C (0.60)	14.72 ***	1.00 ^a	0.58 ^b	0.62 ^b	lgG
rs81233340	A (0.92)	C (0.08)	8.42 **	0.69 ^a	0.35 ^b		CRP
rs338661853	G (0.85)	A (0.15)	13.61 ***	0.74 ^a	0.40 ^b		LYM_PHAGO_FITC
rs80904079	A (0.42)	G (0.58)	9.18 *	0.71 ^a	0.45 ^b	0.78 a	MCV, MCH
rs80803525	A (0.75)	G (0.25)	6.52 *	0.55 ^b	0.76 ^a	0.50 ^b	Lymphocytes
rs342772739	G (0.81)	A (0.19)	3.67 *	0.68 ^a	0.47 ^b		γδ T cells
rs323856019	C (0.83)	T (0.17)	4.53 *	0.73 ^a	0.55 ^b		Leukocytes

¹P-value for the likelihood ratio test of models including or not each SNP: ***=P<0.001, **=0.001<P<0.01, *=0.01<P<0.05 ^{a,b,c}Estimates with different letter superscripts within a SNP row are significantly different at a nominal P<0.05

□ After 6 weeks, the mortality of this outbreak reached 36,4% (47 deaths). Survival analysis showed that the risk of dying was significantly higher for animals with low IgG levels in plasma and/or high SOX13 mRNA expression in blood (Fig. 1).

 \Box The genotypes of the sires for SNPs associated with IgG plasma levels, CRP in serum, percentage of $\gamma\delta$ T cells, lymphocyte phagocytic capacity (LYM_PHAGO_FITC), total number of lymphocytes and leukocytes, mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) (Ballester et al., 2020) were significantly associated with the number of surviving offspring (**Table 1**).

SNPs located in CD163 and GBP5 genes were also associated to piglet survival (Fig. 2). The effects of these SNPs were polygenic and cumulative.

CONCLUSIONS: Our results confirmed the existence of genetic variability in survival after PRRSV infection and provided a set of genetic markers and immunity traits associated with PRRS survival

Funding: The study was funded by grant PID2020-112677RB-C21 awarded by 479 MCIN/AEI/https://doi.org/10.13039/501100011033. Address correspondence to maria.ballester@irta.cat